当前位置: 华文世界 > 科技

eVTOL和城市空中交通的未来发展趋势

2024-05-07科技

01

技术发展趋势

技术层面的分析,我们对主流 eVTOL 厂商、科研机构和高校、行业主管单位等提出的eVTOL技术发展趋势进行了梳理、分析研究。将近期内可以对行业产生较大影响的技术趋势汇总介绍如下。

1.1矢量推进型eVTOL将成为主流构型技术路线


矢量推进型(Tilt-X)eVTOL的旋翼以可倾转的方式兼顾悬停和巡航,在不同飞行阶段采用不同的推进方式。它因为存在过渡状态过程,增加了总体设计的复杂性,牺牲了一定的安全性和可靠性。但矢量推进型eVTOL可实现更高的飞行速度和更远的航程。更大的航程可以让运营商的业务模式有更大的灵活度,更少的充电次数带来更高的任务响应速度和日利用率;更高的飞行速度意味着可以进入更多时效性任务市场,如应急救援、医疗救援。当前,eVTOL在医疗救援市场被诟病的一点就是巡航飞行速度大大低于常规直升机。随着技术的进步以及产业界对电动航空器设计理解的加深,工程技术实力雄厚的头部厂商将大幅度提高矢量推进型eVTOL的可靠性,这种eVTOL届时也将成为主流构型。

1.2应用涵道风扇设计的机型进一步增加


涵道风扇设计有很多优点,如对航空器附近人员提供保护、涵道环括作用有利于降噪设计和城市场景运行、涵道能够在螺旋桨的流场中产生可观的附加拉力进而提高动力系统的效能;但是,涵道风扇也有很多不足和设计难点,阻碍了它的应用推广。涵道风扇会占用额外的结构重量,而它又对强度和刚度要求很高,这就造成了制造成本和难度的问题。部分厂商将涵道集成到机体或机翼上,让两者结构融合,降低重量、提高刚性和强度,典型的如Ascendance Atea、Horizon Cavorite X5/X7、AirMule。

此外,涵道转子与涵道壁的间隙要求非常高(转子半径的1%,甚至更小)因为桨-涵道间隙是系统的关键参数,决定了涵道的环括作用大小,间隙越小则效率越高,实际间隙大小是在成本与效率之间平衡的结果。它就造成涵道的设计、制造和维护要求远高于开放式螺旋桨,进而非常考验eVTOL整机设计团队实力和供应链的能力。这也是当前涵道类eVTOL企业较少的原因之一,但随着行业发展,很多问题将得到缓解。再就是涵道的阻力问题,桨盘位置对涵道风扇系统气动特性的影响体现在气流品质和桨-涵道间隙2个方面。合适的桨盘位置应处于间隙尽可能小、且距离唇口相对较远,以保证涵道的良好环境及整流作用。则涵道壁截面的增大,会造成全机浸润面积增大和阻力增大;采用数量很大的嵌入式涵道,是一个解决思路。LiliumJet在100m距离处的噪音水平预测降低了6dB(A),相同基础设施的乘客吞吐量几乎提高4倍,这是涵道风扇设计优势的一个案例。

1.3电力推进系统向更高效、更轻量、更安全的方向发展

eVTOL通常采用分布式电推进系统,能有效提升航空器的气动效率、运载能力、环保性和鲁棒性。电推系统未来将向更高效、更轻量、更安全的方向发展,具体而言,包括:高压平台的应用和普及,提高电压降低线束直径,进一步提高功率元器件IGBT的效率,轴向磁通电机取代径向磁通电机以降低体积和重量,提高电源模块和驱动模块的效率等。

1.4电池技术不断突破、性能全面提升

目前绝大多数eVTOL机型都采用成熟的、功率密度较高的锂电池。它能在现有约束条件下,在重量、安全特性、航程性能、适航取证进度、成本之间获得较好折中。从长期看,氢燃料电池的能量密度可以达到锂电池的百倍,但是,氢能产业链条和生态建设慢于纯电路线,制氢、储运等存在很多问题。氢燃料电池瞬间放电能力较差,并不太适合eVTOL这种瞬时功率要求高的场景。总之,短期内氢电/氢内燃机路线应用不会太多。

现在和未来一段时间内,电池能量密度远不能与传统航空燃油相比,现有的较高能量密度的电池包括LiliumJet所使用的IonBox的硅阳极锂电池,电芯能量为330Wh/kg;宁德时代在研的 凝聚态电池 ,能达到500Wh/kg,但预计商用还需要1-2年。由于能量密度低,电池包重量过大,现有eVTOL航空器普遍存在有效荷载、航程和续航时间的局限。电池循环数和寿命、充电时间特性也严重限制了eVTOL航空器高频率起降和增加运行成本。未来主机和电池开发厂商将综合权衡能量密度、放电功率、充电时间、循环数和寿命、安全特性等指标,逐步提高锂电池性能;厂商也将开发新的电池类型,如固态电池。

锂离子电池自20世纪90年代发明以来得到广泛应用,在成本和性能之间有较好的平衡。但由于其性能限制以及环境和供应链问题,下一代电池技术仍在不断发展和创新。锂电产业基本上由中日韩三国占据产能绝对主导地位,其它工业强国则试图在新一代电池技术上进行突破,抢占产业发展先发优势。固态电池被普遍认为是下一代电池技术,被美国、欧盟、韩国和日本等主要工业发达国家和地区列为国家发展战略。固态电池利用固态电解质(SSE)取代了易燃的有机液体电解质,理论上更安全;SSE还可以与传统锂离子电池中不用的其他阴极和阳极材料配对,与高压阴极材料及高容量锂金属阳极兼容,有可能使能量密度超过1000Wh/L。固态电池循环寿命更长、更耐用、工作温度范围更宽、堆叠紧密、电池设计简化、机械特性可能更灵活。

1.5态势感知与空中避障技术逐渐应用于城市空中交通

城市空中交通运行环境复杂,面临城市地形地貌复杂、建筑物及附属设施众多、局部气象条件多变、电磁环境恶劣、低空鸟群飞行等情况。为应对这些挑战,eVTOL飞行器需要感知周围环境(如其他飞行器、地面障碍物、天气状况等)并根据环境信息做出相应决策。它需要有更强的态势感知和空中避障技术支撑,包括障碍物探测和分类、障碍物定位及路径预测与碰撞风险分析、避障策略选择和航线重新规划等技术,涉及感知传感器、多源信息融合、智能目标识别、障碍物危险评估与避障决策等专业领域。

传统通用航空器加装ADS-B、TCAS等设备实现自动安全间隔保持、规避周围危险;而在未来复杂空间环境下、大空中交通流的运行将难以达到必要安全标准。很多研究机构和厂商已经在探索基于 UWB 、激光雷达、视觉避碰、4D雷达、合成孔径雷达、5G-A/智能物联网、气象激光雷达等设备和基础设施的新一代态势感知与空中避障技术的研发、验证和试点应用。有一些通用性技术,如根据几何空间相对运动矢量进行避障决策、利用无碰撞路径规划代替避障决策、基于AI的目标视觉识别,已经在汽车自动驾驶和避碰、无人机自动驾驶和避碰等领域有了广泛的应用,也向城市空中交通应用场景延伸。

1.6智能驾驶技术实现自主飞行任重而道远

新一代汽车技术类似,eVTOL也强调高度智能化、自主化的特性。智能驾驶技术是eVTOL实现智能化和自主化飞行的核心,这包括使用先进的飞行控制系统进行起飞、飞行和降落,以及在复杂气象条件下的自动驾驶。eVTOL采用视觉、激光雷达、4D雷达/毫米波雷达等传感器技术,以及新一代通讯技术增强环境态势感知能力,实现多源信息融合,通过AI、大数据、云计算、高性能机载芯片对环境信息分析处理,形成飞行决策。各大厂商普遍强调逐步通过有人驾驶、有人驾驶+简化航空器操纵(SVO)、半自主飞行,最终实现eVTOL航空器完全自主飞行。不过,实现自主飞行还需要相当长的一个过程,进度相对较快的WiskAero计划在2028年试运行eVTOL载人自主飞行。

1.7低空交通数字化体系建设提速

低空经济的发展和推进依赖于底层各类低空交通基础设施的建设,低空交通基础设施的完善和成熟为低空交通的高效、有序、安全的运行提供保障。低空经济运行于没有附着物相对自由的低空空域,因此有别于传统交通基础设施,低空交通天然对数字化技术有非常强烈的诉求和依赖,低空交通飞行保障的数字化体系建设成为重中之重。

随着低空飞行活动持续增加,低空交通飞行的保障体系的重要性日益显现,相关的数字系统建设也伴随政府和产业界的投入增加而提速。腾讯也在积极探索前沿数字技术在低空领域的多元应用,构建了覆盖「低空基建数字化网联、空域数字化管控、低空数字化监管、协同数字化服务、算力数字化支撑、安全数字化保障」的低空交通数字化体系:

低空基建数字化网联

低空基础设施建设要强化标准化建设和数字化网联能力,包括服务低空的通导监(CNS)能力、辅助飞行的微气象和电磁环境服务、提供低空起降和充电的各类地面设施、管控非合作目标的手段等。低空基础设施应该具备数字化网联能力,为低空经济的全链条运行和运营提供全自动化、全智慧化的数字化基础。

全新一代的空天地一体化CNSiM(通讯、导航、监视、情报、气象)能力的主要技术手段有包括但不限于:地面5G移动公网(5G-A)、宽带通信网、数据链和低轨卫星互联网等通信手段;地基增强系统GBAS、星基增强系统SBAS、惯导、视觉导航、UWB、激光雷达、4D雷达、GNSS导航和融合导航等导航手段;一/二次雷达、ADS-B、无线信标、RemoteID、光电探测、通感遥一体等监视手段;气象激光雷达、四维高分辨率数值气象预报系统;满足民航运行/交通管理要求的自动化机场、一体化机巢、自动化充电站、自动化应急降落点等。

空域数字化管控

数字化空域是低空经济有效管控的关键措施。通过数字孪生、城市CIM、三维地理信息地图等技术,构建空域、城市、设施、无人机等实时数字孪生系统,支撑「安全、协同、高效」的数字空域,推动低空空域从「可通达」到「可计算」到「可管控」到「可运营」性质的数字化变革。

空域数字化管控,为空域划设、空域管制、空域网格、空域容量、航路划设、航班排序、导航规划、飞行监测、冲突探测、冲突解脱、运行仿真、场站规划、风险规避、应急处置、非合作目标监管等低空业务提供数字化基础。

低空数字化监管

低空数字化监管是低空交通和管理全自动化运行和运营的突出表现。

低空运行监管通过数字化技术,实现各类低空运行要素的大数据汇聚,包括但不限于精确的城市三维空间地理模型、权威的管制空域和电子围栏数据、完整的高空航路航班数据和低空航路航线数据、全面的低空飞行计划清单、实时的各类 低空飞行器 运行轨迹、可靠的空中气象和电磁等运行环境、完善的地面通导监和机场机巢状态、动态的地面客流车流等影响因素等,经过大数据的清洗、加工、汇聚、整理,通过AI分析和预测,向运营人、民航空管、政府监管等部门提供各类低空数字化监管服务,并通过数字孪生大屏等技术,在各单位的业务监控中心展现低空运行运营的综合态势。

协同数字化服务

低空经济关联方之间的必须保持好数字化协同。

低空经济涉及无人机制造和销售、军民航管理、地方政府监管和场景应用的方方面面,跨部门、跨产业、跨主体、跨地区、跨服务人、跨空域的数字化协同服务也越发重要。

数字化的低空交通系统需要向低空业务关联方提供全面的、实时的、安全的低空协同数据服务。数字化低空交通系统需要实时采集获取并相互协同以下相关信息:通导监运行和保障信息、管制空域和适飞空域信息、航线航路规划和调整信息、飞行申请和冲突信息、飞行计划信息、飞行计划冲突和协调信息、地面影响因素信息、紧急避让服务、应急保障服务等,系统需要构建一套完整的空域数字化协同服务基础能力,保障低空经济业务的安全开展。协同化服务同时还包含向公众和消费者可开放的低空飞行支撑的能力服务。

算力数字化支撑

随着低空经济业务的完善扩展,低空经济业务系统对算力需求越来越庞大,算力分散在「云」、「网(空天地)」和「端(飞行器)」三个不同部分。

低空经济数字化涉及空域、飞行器、航路航线、气象、飞行计划、空间计算、孪生仿真、风险评估与预测、AI识别、视频分析等大规模的低空各类业务计算,涉及对城市低空十万乃至百万架以上飞行器的自动化监管和智慧化服务,其对算力要求是非常巨大的。

数字化的低空交通体系,底层需要有成熟、可靠、超大规模计算的云网边端分布式的算力平台的支撑,满足低空经济的生产、监管、运营、服务的智慧化运行要求。

算力数字化支撑的关键技术,主要包含:飞行器自身的智能化算力、基础的云平台技术(计算、存储和网络的虚拟化)、容器化、微服务、大数据技术、 人工智能AI 技术、物联网技术、数据库技术(关系数据库、内存数据库、时序数据库、地理信息数据库等)、低空智能化管控和服务算法、边缘段的通感算力等。

安全数字化保障

低空经济的运行保障,涉及到空域管理、民航运行、城市三维空间、无人机飞控、企业运行和个人隐私等一系列涉及公共、企业、个人的关键业务和隐私数据,安全保障非常关键。数字化的低空交通体系包含地面遍布全市的低空通导监设备、分布式的低空感知和计算节点、空中大量的无人机及其网络数据通道以及低空交通管理云平台,整体涉及到的安全环境比较复杂。

低空安全数字化保障,在网络安全、数据安全、恶意攻击防护、通信链路安全、飞行器飞控安全以及非合作目标的反制等方面,都要有全面的数字化安全防护手段。

腾讯聚焦低空交通数字化体系建设需求,基于丰富的数字化政企服务经验,提出面向未来低空交通的数字化框架。腾讯的低空数字化解决方案,为低空空域管理和运营提供数字化和智能化技术工具,为低空经济各关联方提供全数字化的智能管理手段和运营服务,为政府和行业主管部门提供强有力的管理和决策依据。

02

应用市场发展趋势

载人客运是eVTOL的发展方向和核心场景,但市场启动需要一段导入和培育期

EASA认为,与公路运输相比,乘坐空中出租车发生致命事故的风险更低,通行时间平均节省15-40分钟,紧急/医疗运送时间节省70%以上,并且可以降低二氧化碳排放量。eVTOL现阶段最主要的应用是替代直升机在测绘、消防救援、电力巡线、警用巡查、安防、医疗救护、搜救、海上石油钻井等领域的应用。载人客运虽是eVTOL的核心发展方向,但在市场成熟前,eVTOL应用首先将在货运物流、城市服务、消防救灾等场景中启动运营,待各项技术成熟、政策完善和市场接受度提高后,大规模进入载客运营。许多公司和机构在构思和研究空中交通的共享出行模式。

eVTOL的航程性能将持续提高,电力驱动的空中交通将从城市向区域出行转变

受限于当前电池能量密度不足,eVTOL普遍定位于城市或城市群内交通出行工具。但随着电池技术的发展、eVTOL续航里程增加,RAM市场启动会水到渠成,也将成为利润更好的业务。除此之外,还有以下因素会加速eVTOL作为对高铁、轮船的补充/替代,实现高效的城际交通:城际和区域出行的单位经济效益高、为客户节省的时间多、所需的飞行频率和机队密度较城市内飞行低、对城市社区的噪音影响小。

eVTOL机型适航取证有序推进,产业生态不断完善、加速构建

头部eVTOL企业的机型将在2025-2026年大量完成取证,并投入市场化运营。在此背景下,上游供应商、基础设施、运营商、空管和航行保障服务商、维修商、人员培训机构、金融服务机构等都将加速布局。同时带动了航空、汽车、物流、新能源企业利用已有业务基础进入行业。

整机制造市场将进入整合期,市场集中度进一步提高,实力较弱的厂商面临淘汰

eVTOL的研发取证和市场推广成本很高,而且盈利回收周期很长,是典型的航空制造业项目特征。随着2025年头部厂商型号大量取证和商业运营,融资和研发能力较弱的厂商面临的竞争压力将进一步增大。2023年,谷歌创始人拉里·佩奇投资的eVTOL制造商KittyHawk在融资、技术和商业化都有障碍的情况下选择关闭。而KittyHawk投资的无人驾驶eVTOL制造商WiskAero,得到了原投资者波音的全资收购。

文章来源:中国eVTOL产业发展报告

注: 本文系网络转载,版权归原作者所有。 仅此标明转载来源, 如涉及作品版权问题,请与 我们联系,我们将在第一时间协商 或删除内容!

飞机租售; 协办航展

审批空域航线 通用机场审批

航空科普进校园;共筑学子航空梦

模拟器体验店布点;助力创业梦想起航

客服(微信):ttfdd168