當前位置: 華文世界 > 三農

又一創新!藍色海洋竟能產出「綠色」氫氣?

2024-07-22三農

氫能在國家新型能源體系建設中占據重要位置,它來源於哪兒?是一種新發現的能源嗎?有何套用?

氫能是一種新發現的能源嗎?

氫能指的是氫氣和氧氣進行化學反應釋放出的化學能,氫氣並不能直接從自然界中獲取,因此氫能屬於二次能源。 人類對氫氣的發現、認識和套用已經超過400年。

最早在16世紀,瑞士化學家發現將「鐵」溶解在硫酸中的過程會釋放一種神秘瓦斯,這是人類對氫氣最早的描述。1783年,法國化學家拉瓦節根據氫氣和氧氣反應產生水,以「成水的元素」賦予了這種神秘瓦斯新的名字。從那以後,氫氣逐漸被大眾熟知,對氫氣用途的研究也越來越多。由此可見,氫氣並不是「新面孔」而是「老朋友」。

圖庫版權圖片,轉載使用可能引發版權糾紛

氫氣在生活中的套用

雖然我們在生活中接觸氫氣的機會並不像接觸氧氣、氮氣等那麽多,但是氫氣卻在我們的生活中有著不可替代的作用。

氫氣的密度遠小於空氣,填充氫氣的氣球可以輕松地漂浮到上萬米高空。攜帶探測器的氫氣球是氣象探測的重要工具,它可以收集各種氣象數據,為天氣預報和氣候研究提供重要支持。

在工業領域,氫氣是合成氨、甲醇等工業用品的重要原料之一,在化工生產中占有重要地位。 此外,在冶金行業,氫氣常被用作還原劑和保護氣,特別是在鋼鐵行業的減碳開發中,「氫冶金技術」是重要的技術路徑。

在交通領域,車輛尾氣排放帶來的環境問題日益加劇,氫氣作為「綠色燃料」受到了研究者的廣泛關註。 氫氣可以透過氫燃料電池發電,為車輛提供驅動力。該過程只生成水,不會排放對環境有汙染的物質,符合環保和永續發展的要求。

在電力領域,氫氣主要扮演著儲能的角色。 氫氣儲能電站透過電解水製取氫氣,將電能以化學能方式儲存在氫氣中,當需要用電時再利用氫氣發電,不僅解決了可再生能源發電的間歇性問題,還提供了穩定可靠的電力供應。

在航天領域,氫氣作為火箭推進劑,能夠提供巨大推力,使火箭順利進入太空。 此外,氫氣燃料電池可以作為航天器的動力系統,具有能源效率高、排放低、噪音小的特點,能夠為飛行器提供持久穩定的動力,滿足長時間航行需求。

圖庫版權圖片,轉載使用可能引發版權糾紛

氫氣的來源

氫氣作為一種重要的能源載體,根據制備方式的不同可分為灰氫、藍氫和綠氫。

灰氫是指透過化石燃料如天然氣、石油等經過重整或氣化等過程產生的氫氣。 由於其主要原料天然氣的資源豐富,灰氫價格相對較低。但是,灰氫的生產過程會排放大量二氧化碳,對環境造成負面影響。

藍氫是在灰氫基礎上,結合碳捕集、利用與封存技術獲取的氫氣。 該技術可以捕捉和封存灰氫制取過程中所產生的二氧化碳,從而減少環境汙染。由於碳捕集和封存技術需要額外的投資和營運成本,藍氫的生產成本相對較高。然而,從環保角度來看,藍氫相較於灰氫更具優勢,是一種過渡性清潔能源。

綠氫是指利用可再生能源(如太陽能、風能等)發電,透過電解水方式產生的氫氣。 其生產過程無碳排放,符合低碳環保理念。綠氫的生產成本主要受制於電解水技術和可再生能源發電技術成本,因此價格更高。

大海能「產出」氫氣嗎?

大海蘊含著豐富的資源,采用電解海水方式可以制取氫氣。 這不僅可以將海水變為電解水原料,還可以直接利用風能、潮汐能等可再生能源發電,為電解海水提供電能,這種方式具有很好的經濟性,可以有效降低制備綠氫的成本。

但是,海水具有很強的腐蝕性,對電解裝置提出了很高的要求。此外,海洋中的波浪對電解過程的穩定性也帶來了很大挑戰。

2024年6月21日,中國科學家在【自然-通訊】(Nature Communications)期刊上發表了關於在波浪運動不可控的海洋中,利用浮動平台進行原位直接電解海水的研究,該文章表示,在海洋中電解海水製氫將成為可能。

研究成果發表於【自然-通訊】(Nature Communications)期刊。圖片來源:參考文獻[1]

研究者透過將分子擴散、界面相平衡等物理力學過程與電化學反應巧妙結合,建立了相變遷移驅動的海水直接電解制氫理論模型。 在該模型中,采用具有超疏水性和離子阻隔效應的防水透氣層,可以有效隔離海水中的雜質,僅允許海水以水分子形態擴散。

海水的高飽和蒸氣壓與高濃度電解質的低飽和蒸氣壓之間存在一種推動力,能促進水分子「海水側氣化-膜內擴散-電解質側液化」的自發相變遷移過程,為電解水反應提供低離子濃度的淡水,解決了海水對電極的腐蝕問題。

並且,電解水反應與海水的遷移速率具有動態自調節的特性,即當電解速率大於水遷移速率時,界面水蒸氣壓差會提高水遷移速率以滿足電解水過程需求。

基於電解水反應與海水遷移速率動態自調節的特性,研究者透過揭示不同區域(深圳灣、興化灣)海水組分濃度變化與界面水蒸氣壓差的關系,闡明了電解海水反應對海洋波動的自適應力,並且該自適應力也同樣降低了不同海浪波動模式對電解反應的影響。

在實驗室模擬海洋環境下,研究者實作了500小時以上電解海水製氫的穩定性測試,驗證了電解系統、防水透氣層等核心關鍵部件在復雜環境下的耐受性與抵禦能力。

a.風力發電機組示意圖;b.渦輪功率隨風速的波動;c.浮動平台在波動環境下的壓力和應力分布;d.海洋中浮動平台的方位;e.海上風向玫瑰圖;f.風力渦輪機網路與漂浮平台照片。圖片來源:參考文獻[1]

此外,該研究團隊還與企業聯合設計研制了直接電解海水製氫漂浮平台,在福建省興化灣3級-8級大風、0.3公尺-0.9公尺海浪幹擾下,與海上風電直接對接,連續穩定執行10天,海水雜質離子阻隔率高達99.99%以上,制氫純度達到99.9%-99.99%。

該研究成果建立了海水原位直接電解制氫全新模式,真正意義上實作了將「海水資源」轉化為「海水能源」。充分利用綠色能源是促進生態永續發展的必經之路,科學家們提出了很多創新技術,為全球環保事業註入了不竭的動力,讓我們在追求綠色環保的道路上加油前行。

參考文獻

[1] Liu T, Zhao Z, Tang W, et al. In-situ direct seawater electrolysis using floating platform in ocean with uncontrollable wave motion[J].Nature Communications, 2024.

[2] Guo J, Zheng Y, Hu Z, et al. Direct seawater electrolysis by adjusting the local reaction environment of a catalyst[J].Nature Energy, 2023.

[3] 徐京輝,王宇超,殷雨田,等.工業電解海水製氫技術及電極材料研究進展[J].低碳化學與化工, 2024.

[4] 舟丹.什麽是灰氫,藍氫和綠氫[J].中外能源, 2021.

策劃制作

出品丨科普中國

作者丨石暢 物理化學博士

監制丨中國科普博覽

責編丨董娜娜

審校丨徐來 林林